The perturbation of consistent least squares problems
نویسندگان
چکیده
منابع مشابه
Backward perturbation analysis for scaled total least-squares problems
The scaled total least-squares (STLS) method unifies the ordinary least-squares (OLS), the total leastsquares (TLS), and the data least-squares (DLS) methods. In this paper we perform a backward perturbation analysis of the STLS problem. This also unifies the backward perturbation analyses of the OLS, TLS and DLS problems. We derive an expression for an extended minimal backward error of the ST...
متن کاملTowards A Backward Perturbation Analysis For Data Least Squares Problems
Given an approximate solution to a data least squares (DLS) problem, we would like to know its minimal backward error. Here we derive formulas for what we call an “extended” minimal backward error, which is at worst a lower bound on the minimal backward error. When the given approximate solution is a good enough approximation to the exact solution of the DLS problem (which is the aim in practic...
متن کاملBackward Perturbation Bounds for Linear Least Squares Problems
Recently, Higham and Wald en, Karlson, and Sun have provided formulas for computing the best backward perturbation bounds for the linear least squares problem. In this paper we provide several backward perturbation bounds that are easier to compute and optimal up to a factor less than 2. We also show that any least squares algorithm that is stable in the sense of Stewart is necessarily a backwa...
متن کاملLinear Least Squares Problems
A fundamental task in scientific computing is to estimate parameters in a mathematical model from collected data which are subject to errors. The influence of the errors can be reduced by using a greater number of data than the number of unknowns. If the model is linear, the resulting problem is then to “solve” an in general inconsistent linear system Ax = b, where A ∈ Rm×n and m ≥ n. In other ...
متن کاملConsistent least squares fitting of ellipsoids
A parameter estimation problem for ellipsoid fitting in the presence of measurement errors is considered. The ordinary least squares estimator is inconsistent, and due to the nonlinearity of the model, the orthogonal regression estimator is inconsistent as well, i.e., these estimators do not converge to the true value of the parameters, as the sample size tends to infinity.A consistent estimato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1989
ISSN: 0024-3795
DOI: 10.1016/0024-3795(89)90598-3